
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 8: Deadlocks

Outline

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.2

▪ System Model

▪ Deadlock Characterization

▪ Methods for Handling Deadlocks

▪ Deadlock Prevention

▪ Deadlock Avoidance

▪ Deadlock Detection

▪ Recovery from Deadlock

Chapter Objectives

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.3

▪ Illustrate how deadlock can occur when mutex locks are used

▪ Define the four necessary conditions that characterize deadlock

▪ Identify a deadlock situation in a resource allocation graph

▪ Evaluate the four different approaches for preventing deadlocks

▪ Apply the banker’s algorithm for deadlock avoidance

▪ Apply the deadlock detection algorithm

▪ Evaluate approaches for recovering from deadlock

Deadlock

□ Permanent blocking of a set of processes that either compete for
system resources or communicate with each other

□ A set of blocked processes each holding a resource and waiting
to acquire a resource held by another process in the set

□ No efficient solution

□ Most OSes do not prevent or deal with deadlocks

□ But such features will probably be added soon

Deadlock

Deadlock

Example:

P0

…

Request(Disk)

…
Request(Printer)

…

Release(Disk)

…

Release(Printer)

…

P1

…

Request(Printer)

…
Request(Disk)

…

Release(Printer)

…

Release(Disk)

…

P0 P1

P0 P1

R0

R1

System Model

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.7

▪ System consists of resources

▪ Resource types R1, R2, . . ., Rm

• CPU cycles, memory space, I/O devices

▪ Each resource type Ri has Wi instances.

▪ Each process utilizes a resource as follows:

• request

 If the request cannot be granted immediately, then the process
must wait until it can acquire the resource.

• use

• release

Deadlock with Semaphores

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.8

▪ Data:

• A semaphore S1 initialized to 1

• A semaphore S2 initialized to 1

▪ Two processes P1 and P2

▪ P1:

wait(s1)

wait(s2)

▪ P2:

wait(s2)

wait(s1)

Necessary Conditions for Deadlock

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.9

Deadlock can arise if four conditions hold simultaneously (Coffman conditions):

1. Mutual exclusion: only one process at a time can use a resource

2. Hold and wait: a process holding at least one resource is waiting to

acquire additional resources held by other processes

3. No preemption: a resource can be released only voluntarily by the

process holding it, after that process has completed its task

▪ The first three conditions are necessary but not sufficient for a deadlock

to exist

Necessary Conditions for Deadlock

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.10

Deadlock can arise if four conditions hold simultaneously (Coffman conditions):

4. Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes such

that

• P0 is waiting for a resource that is held by P1,

• P1 is waiting for a resource that is held by P2,

• …, Pn–1 is waiting for a resource that is held by Pn,

• and Pn is waiting for a resource that is held by P0.

▪ The first three conditions are necessary but not sufficient for a deadlock

to exist

▪ For deadlock to actually take place, the fourth condition is required

Resource-Allocation Graph

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.11

A directed graph consistsof: A set of vertices V and a set of edges E.

▪ V is partitioned into two types:

• P = {P1, P2, …, Pn}, the set consisting of all the processes in the
system

• R = {R1, R2, …, Rm}, the set consisting of all resource types in the
system

▪ E is also portioned into two types:

• request edge – directed edge Pi Rj

• assignment edge – directed edge Rj  Pi

Resource Allocation Graph Example

▪ One instance of R1

▪ Two instances of R2

▪ One instance of R3

▪ Three instance of R4

▪ T1 holds one instance of R2 and is waiting for an
instance of R1

▪ T2 holds one instance of R1, one instance of R2,
and is waiting for an instance of R3

▪ T3 is holds one instance of R3

Deadlock?

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.12

Resource Allocation Graph

Deadlock?

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.13

Resource Allocation Graph

Deadlock?

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.14

P0 P1

R0

R1

Basic Facts

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.15

▪ If graph contains no cycles  no deadlock

▪ If graph contains a cycle 

• if only one instance per resource type, then deadlock

• if several instances per resource type, possibility of deadlock

Methods for Handling Deadlocks

▪ Ostrich

• Ignore the problem and pretend that deadlocks never
occur in the system

• Used by most operating systems, including UNIX, Windows

▪ Ensure that the system will never enter a deadlock state:

• Deadlock prevention

 A set of methods for ensuring that at least one of the necessary conditions
cannot hold

• Deadlock avoidance

 Tries to avoid deadlock by delaying the requests which may result in a
deadlock.

 Requires additional information concerning which resources a process will
request and use during its life time.

▪ Allow the system to enter a deadlock state and then detect and recover

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.16

 Attempt to detect the presence of deadlock and take action to recover.

Deadlock Prevention

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.17

Invalidate one of the four necessary conditions for deadlock:

▪ Mutual Exclusion – not required for sharable resources (e.g., read-only
files); must hold for non-sharable resources

• In general, the first of the four listed conditions cannot be disallowed

• If access to a resource requires mutual exclusion, then mutual
exclusion must be supported by the OS.

▪ Hold and Wait

• must guarantee that whenever a process requests a resource, it
does not hold any other resources

Deadlock Prevention

□ Hold and Wait (Cont.)

□ 1. Require a process request all of its required resources at one

time (e.g., at the beginning)

□ 2. Allow process to request resources only when the process has none

■ i.e., before a process can request any additional resources, it must release

all the resources that it is currently allocated

□ Disadvantages

■ Low resource utilization

■ Starvation possible: a process that needs several popular resources

may have to wait indefinitely

Deadlock Prevention

□ No Preemption

□ If a process that is holding some resources requests another resource

that cannot be immediately allocated to it, then all resources currently

being held are implicitly released

□ Preempted resources are added to the list of resources for which the

process is waiting

□ Process will be restarted only when it can regain its old resources, as

well as the new ones that it is requesting

Deadlock Prevention

□ No Preemption (Cont.)
□ Disadvantage

■ It is often applied to resources whose state can be easily saved and restored
later, such as CPU registers

■ It cannot generally be applied to such resources as printers and tape drives

□ CircularWait
□ Impose a total ordering of all resource types, and require that each

process requests resources in an increasing order of enumeration

Deadlock Prevention

P0 P1

3
R0

R1

5

□ CircularWait (Cont.)

□ Disadvantage: It is up to application developers to write programs that

follow the ordering

Deadlock Avoidance

□ In deadlock prevention, we constrain resource requests which leads to

inefficient use of resources and inefficient execution of processes

□ With deadlock avoidance, a decision is made dynamically whether the current

resource allocation request will potentially lead to a deadlock

□ Deadlock avoidance thus requires knowledge of future process resource

requests

Safe State

□ A state is safe if the system can allocate resources to each process (up to its

maximum) in some order and still avoid a deadlock (i.e., all of the processes can

be run to completion)

□ System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL the

processes in the systems such that for each Pi, the resources that Pi can still

request can be satisfied by currently available resources plus resources held

by all the Pj, with j < i

Safe, Unsafe, Deadlock State

□ If a system is in safe state no deadlocks

□ If a system is in unsafe state possibility of

deadlock

□ Avoidance  ensure that a system will

never enter an unsafe state

□ When a process requests an available

resource, system must decide if immediate

allocation leaves the system in a safe state

Avoidance Algorithms

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.25

▪ Single instance of a resource type

• Use a resource-allocation graph

▪ Multiple instances of a resource type

• Use the Banker’s Algorithm

Resource-Allocation Graph Scheme

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.26

▪ Claim edge Pi  Rj indicated that process Pj may request resource Rj;
represented by a dashed line

▪ Claim edge converts to request edge when a process requests a resource

▪ Request edge converted to an assignment edge when the resource is allocated
to the process

▪ When a resource is released by a process, assignment edge reconverts
to a claim edge

▪ Resources must be claimed a priori in the system

Resource-Allocation Graph

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.27

Unsafe State In Resource-Allocation Graph

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.28

Banker’s Algorithm

□ The banker’s algorithm is used when we have Multiple instances of a

resource type

□ For Single instance of a resource type, we can use resource-allocation graph

(see Silberschatz)

□ The name was chosen because the algorithm could be used in a

banking system to ensure that the bank never allocated its available cash

in such a way that it could no longer satisfy the needs of all its customers

□ A new process must declare the maximum number of instances of each

resource type that it may need (weakness of this algorithm)

Data Structures for Banker’s Alg.

□ These data structures encode the state of the resource-allocation system

□ Let n be the number of processes, and m be the number of resources

types

□ Resource: Vector of length m indicates total amount of each resource

in the system.

□ Available: Vector of length m indicates the number of available resources
of each type.

□ If available[j] = k, there are k instances of resource type Rj available

Data Structures for Banker’s Alg.

□ Max: n m matrix defines the maximum demand of each process. If
Max [i, j] = k, then process Pi may request at most k instances of
resource type Rj

□ Allocation: n  m matrix. If Allocation[i, j] = k then Pi is currently allocated

k instances of Rj

□ Need: n m matrix. If Need[i, j] = k, then Pi may need k more instances
of Rj to complete its task

□ Need [i, j] = Max[i, j] – Allocation[i, j]

Banker’s Algorithm: an Example

R0 R1 R2 R3

P0 1 0 2 3

P1 2 3 1 0

P2 0 2 1 1

P3 4 3 1 1

P4 2 2 2 1

R0 R1 R2 R3

P0 1 0 0 2

P1 1 2 0 0

P2 0 1 1 0

P3 2 3 1 0

P4 0 0 0 0

R0 R1 R2 R3

P0 0 0 2 1

P1 1 1 1 0

P2 0 1 0 1

P3 2 0 0 1

P4 2 2 2 1

Need

Resource =
R0 R1 R2 R3

5 7 2 3 Avail =
R0 R1 R2 R3

1 1 0 1

(1,1,0,1)

Max

(1,2,1,1) P1 (4,7,2,1) (5,7,2,3) (5,7,2,3)

Is the system safe?

Allocation

P2 (2,4,1,1) P3 P0 P4

Banker’s Algorithm: an Example

R0 R1 R2 R3

P0 1 0 2 3

P1 2 3 1 0

P2 0 2 1 1

P3 4 3 1 1

P4 2 2 2 1

R0 R1 R2 R3

P0 1 0 0 2

P1 1 2 0 0

P2 0 1 1 0

P3 2 3 1 0

P4 1 0 0 0

R0 R1 R2 R3

P0 0 0 2 1

P1 1 1 1 0

P2 0 1 0 1

P3 2 0 0 1

P4 1 2 2 1

Allocation Need

Resource = 5 7 2 3
R0 R1 R2 R3 R0 R1 R2 R3

Avail= 0 1 0 1

(0,1,0,1)

P4 asks for an instance of R0, is it allocated?

Max

(0,2,1,1)P2

Banker’s Algorithm: an Example

R0 R1 R2 R3

P0 1 0 2 3

P1 2 3 1 0

P2 0 2 1 1

P3 4 3 1 1

P4 2 2 2 1

R0 R1 R2 R3

P0 1 0 0 2

P1 2 2 0 0

P2 0 1 1 0

P3 2 3 1 0

P4 0 0 0 0

R0 R1 R2 R3

P0 0 0 2 1

P1 0 1 1 0

P2 0 1 0 1

P3 2 0 0 1

P4 2 2 2 1

Need

Resource = 5 7 2 3
R0 R1 R2 R3 R0 R1 R2 R3

Avail= 0 1 0 1

P1 asks for an instance of R0, is it allocated?

Max

(0,1,0,1) (0,2,1,1) P1 (4,7,2,1) (5,7,2,3) (5,7,2,3)
P2 (2,4,1,1) P3 P0 P4

Allocation

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively

Initialize:

Work =Available

Finish[i] = false for i = 0, 1, …, n -1

2. Find an i such that both:
(a) Finish[i] = false

(b) Needi  Work

If no such i exists, go to step 4

3. Work = Work +Allocationi

Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Resource-Request Algorithm

1. If Requesti  Needi go to step 2. Otherwise, raise error condition, since

process has exceeded its maximum claim

2. If Requesti  Available, go to step 3. Otherwise Pi must wait, since

resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state as

follows:

Available = Available – Request;

Allocationi = Allocationi + Requesti ;

Needi = Needi –Requesti ;

• If safe the resources are allocated to Pi

• If unsafe Pi must wait, and the oldresource-allocation state is restored

Note: Request = request vector for process Pi. If Requesti [j] = k then process Pi

wants k instances of resource type Rj

Banker’s Algorithm Disadvantages

□ Maximum resource requirement must be stated in advance

□ There must be a fixed number of resources to allocate

□ The algorithm is very conservative

□ It limits access to resources

Deadlock Detection and Recovery

□ If a system does not employ either a deadlock prevention or a deadlock

avoidance algorithm, then a deadlock situation may occur

□ Then, the system must provide

□ An algorithm that examines the state of the system to determine

whether a deadlock has occurred

□ An algorithm to recover from the deadlock

Deadlock Detection
Single Instance of Each Resource Type

▪ Use resource-allocation graph or a variant of it, called a wait-for graph

▪ Maintain wait-for graph

• Nodes are processes

• Pi Pj if Pi is waiting for Pj

▪ Periodically invoke an algorithm that searches for a cycle in the graph. If there is
a cycle, there exists a deadlock

▪ An algorithm to detect a cycle in a graph requires an order of n2 operations,
where n is the number of vertices in the graph

Resource-Allocation Graph

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.39

Corresponding wait-for graph

Deadlock Detection

□ Several instances of each resource type

□ The algorithm is very similar to the banker’s algorithm, with two main

differences

■ The matrices Max and Need are replaced with an n m matrix Request indicates

the current request of each process. If Request[i][j] = k, then process Pi is requesting

k more instances of resource type Rj

■ If a process has a row in the Allocation matrix of all zeros, then it is marked as

finished.

□ If there are unmarked processes at the end of the algorithm, these

processes are deadlocked

Deadlock Detection: an Example

R0 R1 R2 R3 R4

P0 0 1 0 0 1

P1 0 0 1 0 1

P2 0 0 0 0 1

P3 1 0 1 0 1

R0 R1 R2 R3 R4

P0 1 0 1 1 0

P1 1 1 0 0 0

P2 0 0 0 1 0

P3 0 0 0 0 0

Resource =

(0,0,0,1,1)(0,0,0,0,1)

R0 R1 R2 R3 R4

2 1 1 2 1

□ Is there a deadlock in the system?

Avail =
R0 R1 R2 R3 R4

0 0 0 0 1

Yes, P0 and P1 are deadlocked

RequestAllocation

P2

Detection Algorithm

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.42

1. Let Work and Finish be vectors of length m and n, respectively
Initialize:

a) Work = Available

b) For i = 1,2, …, n, if Allocationi < 0, then
Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:

a) Finish[i] == false

b) Requesti < Work

If no such i exists, go to step 4

Detection Algorithm (Cont.)

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.43

3. Work = Work + Allocationi

Finish[i] = true

go to step 2

4. If Finish[i] == false, for some i, 1  i  n, then the system is in

deadlock state. Moreover, if Finish[i] == false, then Pi is deadlocked

Algorithm requires an order of O(m x n2) operations to detect
whether the system is in deadlocked state

Deadlock Recovery

□ Abort all deadlocked processes

□ One of the most common solution adopted in operating systems

□ Expensive solution

□ Back up each deadlocked process to some previously defined checkpoint,

and restartall process

□ Original deadlock may occur again

□ System requires rollback and restart mechanisms

Detection-Algorithm Usage

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition 8.46

▪ When, and how often, to invoke depends on:

• How often a deadlock is likely to occur?

• How many processes will need to be rolled back?

 one for each disjoint cycle

▪ If detection algorithm is invoked arbitrarily, there may be many cycles in

the resource graph and so we would not be able to tell which of the

many deadlocked processes “caused” the deadlock.

Deadlock Recovery

□ Successively abort deadlocked processes until deadlock no

longer exists

□ Incurs considerable overhead, since after each process is aborted, a

deadlock-detection algorithm must be invoked

□ Successively preempt resources until deadlock no longer exists

Deadlock Recovery

□ The last two methods requires some selection criteria to choose
the victim process

□ Choose the process with the
□ least amount of processor time consumed so far

□ least amount of output produced so far

□ most estimated time remaining

□ least total resources allocated so far

□ lowest priority

8.49 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Recovery from Deadlock: Resource Preemption

▪ Selecting a victim – minimize cost

▪ Rollback – return to some safe state, restart process for that state

▪ Starvation – same process may always be picked as victim, include
number of rollback in cost factor

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 8

