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Chapter 8: Deadlocks
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▪ System Model

▪ Deadlock Characterization

▪ Methods for Handling Deadlocks

▪ Deadlock Prevention

▪ Deadlock Avoidance

▪ Deadlock Detection

▪ Recovery from Deadlock



Chapter Objectives
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▪ Illustrate how deadlock can occur when mutex locks are used

▪ Define the four necessary conditions that characterize deadlock

▪ Identify a deadlock situation in a resource allocation graph

▪ Evaluate the four different approaches for preventing deadlocks

▪ Apply the banker’s algorithm for deadlock avoidance

▪ Apply the deadlock detection algorithm

▪ Evaluate approaches for recovering from deadlock



Deadlock

□ Permanent blocking of a set of processes that either compete for 
system resources or communicate with each other

□ A set of blocked processes each holding a resource and waiting 
to acquire a resource held by another process in the set

□ No efficient solution

□ Most OSes do not prevent or deal with deadlocks

□ But such features will probably be added soon



Deadlock



Deadlock

Example:

P0

… 

Request(Disk)

… 
Request(Printer)

… 

Release(Disk)

…

Release(Printer)

…

P1

… 

Request(Printer)

… 
Request(Disk)

… 

Release(Printer)

…

Release(Disk)

…

P0 P1

P0 P1

R0

R1



System Model
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▪ System consists of resources

▪ Resource types R1, R2, . . ., Rm

• CPU cycles, memory space, I/O devices

▪ Each resource type Ri has Wi instances.

▪ Each process utilizes a resource as follows:

• request

 If the request cannot be granted immediately, then the process 
must wait until it can acquire the resource.

• use

• release



Deadlock with Semaphores
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▪ Data:

• A semaphore S1 initialized to 1

• A semaphore S2 initialized to 1

▪ Two processes P1 and P2

▪ P1: 

wait(s1)  

wait(s2)

▪ P2:

wait(s2)  

wait(s1)



Necessary Conditions for Deadlock
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Deadlock can arise if four conditions hold simultaneously (Coffman conditions):

1. Mutual exclusion: only one process at a time can use a resource

2. Hold and wait: a process holding at least one resource is waiting to 

acquire additional resources held by other processes

3. No preemption: a resource can be released only voluntarily by the 

process holding it, after that process has completed its task

▪ The first three conditions are necessary but not sufficient for a deadlock 

to exist



Necessary Conditions for Deadlock
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Deadlock can arise if four conditions hold simultaneously (Coffman conditions ):

4. Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes such 

that

• P0 is waiting for a resource that is held by P1,

• P1 is waiting for a resource that is held by P2,

• …, Pn–1 is waiting for a resource that is held by Pn,

• and Pn is waiting for a resource that is held by P0.

▪ The first three conditions are necessary but not sufficient for a deadlock 

to exist

▪ For deadlock to actually take place, the fourth condition is required



Resource-Allocation Graph
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A directed graph consistsof: A set of vertices V and a set of edges E.

▪ V is partitioned into two types:

• P = {P1, P2, …, Pn}, the set consisting of all the processes in the
system

• R = {R1, R2, …, Rm}, the set consisting of all resource types in the
system

▪ E is also portioned into two types:

• request edge – directed edge Pi Rj

• assignment edge – directed edge Rj  Pi



Resource Allocation Graph Example

▪ One instance of R1

▪ Two instances of R2

▪ One instance of R3

▪ Three instance of R4

▪ T1 holds one instance of R2 and is waiting for an
instance of R1

▪ T2 holds one instance of R1, one instance of R2,
and is waiting for an instance of R3

▪ T3 is holds one instance of R3

Deadlock?
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Resource Allocation Graph

Deadlock?
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Resource Allocation Graph

Deadlock?
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P0 P1

R0

R1



Basic Facts
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▪ If graph contains no cycles  no deadlock

▪ If graph contains a cycle 

• if only one instance per resource type, then deadlock

• if several instances per resource type, possibility of deadlock



Methods for Handling Deadlocks

▪ Ostrich

• Ignore the problem and pretend that deadlocks never
occur in the system

• Used by most operating systems, including UNIX, Windows

▪ Ensure that the system will never enter a deadlock state:

• Deadlock prevention

 A set of methods for ensuring that at least one of the necessary conditions 
cannot hold

• Deadlock avoidance

 Tries to avoid deadlock by delaying the requests which may result in a 
deadlock.

 Requires additional information concerning which resources a process will 
request and use during its life time.

▪ Allow the system to enter a deadlock state and then detect and recover
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 Attempt to detect the presence of deadlock and take action to recover.



Deadlock Prevention
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Invalidate one of the four necessary conditions for deadlock:

▪ Mutual Exclusion – not required for sharable resources (e.g., read-only 
files); must hold for non-sharable resources

• In general, the first of the four listed conditions cannot be disallowed

• If access to a resource requires mutual exclusion, then mutual 
exclusion must be supported by the OS.

▪ Hold and Wait

• must guarantee that whenever a process requests a resource, it 
does not hold any other resources



Deadlock Prevention

□ Hold and Wait (Cont.)

□ 1. Require a process request all of its required resources at one

time (e.g., at the beginning)

□ 2. Allow process to request resources only when the process has none

■ i.e., before a process can request any additional resources, it must release

all the resources that it is currently allocated

□ Disadvantages

■ Low resource utilization

■ Starvation possible: a process that needs several popular resources

may have to wait indefinitely



Deadlock Prevention

□ No Preemption

□ If a process that is holding some resources requests another resource 

that cannot be immediately allocated to it, then all resources currently 

being held are implicitly released

□ Preempted resources are added to the list of resources for which the 

process is waiting

□ Process will be restarted only when it can regain its old resources, as

well as the new ones that it is requesting



Deadlock Prevention

□ No Preemption (Cont.)
□ Disadvantage

■ It is often applied to resources whose state can be easily saved and restored 
later, such as CPU registers

■ It cannot generally be applied to such resources as printers and tape drives

□ CircularWait
□ Impose a total ordering of all resource types, and require that each 

process requests resources in an increasing order of enumeration



Deadlock Prevention

P0 P1

3
R0

R1

5

□ CircularWait (Cont.)

□ Disadvantage: It is up to application developers to write programs that 

follow the ordering



Deadlock Avoidance

□ In deadlock prevention, we constrain resource requests which leads to 

inefficient use of resources and inefficient execution of processes

□ With deadlock avoidance, a decision is made dynamically whether the current

resource allocation request will potentially lead to a deadlock

□ Deadlock avoidance thus requires knowledge of future process resource 

requests



Safe State

□ A state is safe if the system can allocate resources to each process (up to its 

maximum) in some order and still avoid a deadlock (i.e., all of the processes can

be run to completion)

□ System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL the 

processes in the systems such that for each Pi, the resources  that Pi can still

request can be satisfied by currently available resources plus resources held

by all the Pj, with j < i



Safe, Unsafe, Deadlock State

□ If a system is in safe state no deadlocks

□ If a system is in unsafe state possibility of 

deadlock

□ Avoidance  ensure that a system will 

never enter an unsafe state

□ When a process requests an available

resource, system must decide if immediate 

allocation leaves the system in a safe state



Avoidance Algorithms
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▪ Single instance of a resource type

• Use a resource-allocation graph

▪ Multiple instances of a resource type

• Use the Banker’s Algorithm



Resource-Allocation Graph Scheme
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▪ Claim edge Pi  Rj indicated that process Pj may request resource Rj; 
represented by a dashed line

▪ Claim edge converts to request edge when a process requests a resource

▪ Request edge converted to an assignment edge when the resource is allocated
to the process

▪ When a resource is released by a process, assignment edge reconverts
to a claim edge

▪ Resources must be claimed a priori in the system



Resource-Allocation Graph
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Unsafe State In Resource-Allocation Graph
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Banker’s Algorithm

□ The banker’s algorithm is used when we have Multiple instances of a

resource type

□ For Single instance of a resource type, we can use resource-allocation graph

(see Silberschatz)

□ The name was chosen because the algorithm could be used in a 

banking system to ensure that the bank never allocated its available cash 

in such a way that it could no longer satisfy the needs of all its customers

□ A new process must declare the maximum number of instances of each

resource type that it may need (weakness of this algorithm)



Data Structures for Banker’s Alg.

□ These data structures encode the state of the resource-allocation system

□ Let n be the number of processes, and m be the number of resources

types

□ Resource: Vector of length m indicates total amount of each resource

in the system.

□ Available: Vector of length m indicates the number of available resources
of each type.

□ If available[j] = k, there are k instances of resource type Rj available



Data Structures for Banker’s Alg.

□ Max: n m matrix defines the maximum demand of each process. If 
Max [i, j] = k, then process Pi may request at most k instances of
resource type Rj

□ Allocation: n  m matrix. If Allocation[i, j] = k then Pi is currently allocated

k instances of Rj

□ Need: n m matrix. If Need[i, j] = k, then Pi may need k more instances
of Rj to complete its task

□ Need [i, j] = Max[i, j] – Allocation[i, j]



Banker’s Algorithm: an Example

R0 R1 R2 R3

P0 1 0 2 3

P1 2 3 1 0

P2 0 2 1 1

P3 4 3 1 1

P4 2 2 2 1

R0 R1 R2 R3

P0 1 0 0 2

P1 1 2 0 0

P2 0 1 1 0

P3 2 3 1 0

P4 0 0 0 0

R0 R1 R2 R3

P0 0 0 2 1

P1 1 1 1 0

P2 0 1 0 1

P3 2 0 0 1

P4 2 2 2 1

Need

Resource =
R0 R1 R2 R3

5 7 2 3 Avail =
R0 R1 R2 R3

1 1 0 1

(1,1,0,1)

Max

(1,2,1,1) P1 (4,7,2,1) (5,7,2,3) (5,7,2,3)

Is the system safe?

Allocation

P2 (2,4,1,1) P3 P0 P4



Banker’s Algorithm: an Example

R0 R1 R2 R3

P0 1 0 2 3

P1 2 3 1 0

P2 0 2 1 1

P3 4 3 1 1

P4 2 2 2 1

R0 R1 R2 R3

P0 1 0 0 2

P1 1 2 0 0

P2 0 1 1 0

P3 2 3 1 0

P4 1 0 0 0

R0 R1 R2 R3

P0 0 0 2 1

P1 1 1 1 0

P2 0 1 0 1

P3 2 0 0 1

P4 1 2 2 1

Allocation Need

Resource = 5 7 2 3
R0 R1 R2 R3 R0 R1 R2 R3

Avail= 0 1 0 1

(0,1,0,1)

P4 asks for an instance of R0, is it allocated?

Max

(0,2,1,1)P2



Banker’s Algorithm: an Example

R0 R1 R2 R3

P0 1 0 2 3

P1 2 3 1 0

P2 0 2 1 1

P3 4 3 1 1

P4 2 2 2 1

R0 R1 R2 R3

P0 1 0 0 2

P1 2 2 0 0

P2 0 1 1 0

P3 2 3 1 0

P4 0 0 0 0

R0 R1 R2 R3

P0 0 0 2 1

P1 0 1 1 0

P2 0 1 0 1

P3 2 0 0 1

P4 2 2 2 1

Need

Resource = 5 7 2 3
R0 R1 R2 R3 R0 R1 R2 R3

Avail= 0 1 0 1

P1 asks for an instance of R0, is it allocated?

Max

(0,1,0,1) (0,2,1,1) P1 (4,7,2,1) (5,7,2,3) (5,7,2,3)
P2 (2,4,1,1) P3 P0 P4

Allocation



Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively 

Initialize:

Work =Available

Finish[i] = false for i = 0, 1, …, n -1

2. Find an i such that both:
(a) Finish[i] = false

(b) Needi  Work

If no such i exists, go to step 4

3. Work = Work +Allocationi  

Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state



Resource-Request Algorithm

1. If Requesti  Needi go to step 2. Otherwise, raise error condition, since

process has exceeded its maximum claim

2. If Requesti  Available, go to step 3. Otherwise Pi must wait, since 

resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state as

follows:

Available = Available – Request; 

Allocationi = Allocationi + Requesti ; 

Needi = Needi –Requesti ;

• If safe the resources are allocated to Pi

• If unsafe Pi must wait, and the oldresource-allocation state is restored

Note: Request = request vector for process Pi. If Requesti [j] = k then process Pi

wants k instances of resource type Rj



Banker’s Algorithm Disadvantages

□ Maximum resource requirement must be stated in advance

□ There must be a fixed number of resources to allocate

□ The algorithm is very conservative

□ It limits access to resources



Deadlock Detection and Recovery

□ If a system does not employ either a deadlock prevention or a deadlock

avoidance algorithm, then a deadlock situation may occur

□ Then, the system must provide

□ An algorithm that examines the state of the system to determine 

whether a deadlock has occurred

□ An algorithm to recover from the deadlock



Deadlock Detection
Single Instance of Each Resource Type

▪ Use resource-allocation graph or a variant of it, called a wait-for graph

▪ Maintain wait-for graph

• Nodes are processes

• Pi Pj if Pi is waiting for Pj

▪ Periodically invoke an algorithm that searches for a cycle in the graph. If there is
a cycle, there exists a deadlock

▪ An algorithm to detect a cycle in a graph requires an order of n2 operations, 
where n is the number of vertices in the graph

Resource-Allocation Graph
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Corresponding wait-for graph



Deadlock Detection

□ Several instances of each resource type

□ The algorithm is very similar to the banker’s algorithm, with two main

differences

■ The matrices Max and Need are replaced with an n m matrix Request indicates

the current request of each process. If Request[i][j] = k, then process Pi is requesting 

k more instances of resource type Rj

■ If a process has a row in the Allocation matrix of all zeros, then it is marked as 

finished.

□ If there are unmarked processes at the end of the algorithm, these 

processes are deadlocked



Deadlock Detection: an Example

R0 R1 R2 R3 R4

P0 0 1 0 0 1

P1 0 0 1 0 1

P2 0 0 0 0 1

P3 1 0 1 0 1

R0 R1 R2 R3 R4

P0 1 0 1 1 0

P1 1 1 0 0 0

P2 0 0 0 1 0

P3 0 0 0 0 0

Resource =

(0,0,0,1,1)(0,0,0,0,1)

R0 R1 R2 R3 R4

2 1 1 2 1

□ Is there a deadlock in the system?

Avail =
R0 R1 R2 R3 R4

0 0 0 0 1

Yes, P0 and P1 are deadlocked

RequestAllocation

P2



Detection Algorithm
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1. Let Work and Finish be vectors of length m and n, respectively 
Initialize:

a) Work = Available

b) For i = 1,2, …, n, if Allocationi < 0, then
Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:

a) Finish[i] == false

b) Requesti < Work

If no such i exists, go to step 4



Detection Algorithm (Cont.)
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3. Work = Work + Allocationi 

Finish[i] = true

go to step 2

4. If Finish[i] == false, for some i, 1  i  n, then the system is in 

deadlock state. Moreover, if Finish[i] == false, then Pi is deadlocked

Algorithm requires an order of O(m x n2) operations to detect 
whether the system is in deadlocked state



Deadlock Recovery

□ Abort all deadlocked processes

□ One of the most common solution adopted in operating systems

□ Expensive solution

□ Back up each deadlocked process to some previously defined checkpoint,

and restartall process

□ Original deadlock may occur again

□ System requires rollback and restart mechanisms



Detection-Algorithm Usage
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▪ When, and how often, to invoke depends on:

• How often a deadlock is likely to occur?

• How many processes will need to be rolled back?

 one for each disjoint cycle

▪ If detection algorithm is invoked arbitrarily, there may be many cycles in 

the resource graph and so we would not be able to tell which of the 

many deadlocked processes “caused” the deadlock.



Deadlock Recovery

□ Successively abort deadlocked processes until deadlock no 

longer exists

□ Incurs considerable overhead, since after each process is aborted, a

deadlock-detection algorithm must be invoked

□ Successively preempt resources until deadlock no longer exists



Deadlock Recovery

□ The last two methods requires some selection criteria to choose
the victim process

□ Choose the process with the
□ least amount of processor time consumed so far

□ least amount of output produced so far

□ most estimated time remaining

□ least total resources allocated so far

□ lowest priority
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Recovery from Deadlock: Resource Preemption

▪ Selecting a victim – minimize cost

▪ Rollback – return to some safe state, restart process for that state

▪ Starvation – same process may always be picked as victim, include
number of rollback in cost factor
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End of Chapter 8


